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Abstract

We present the geometrical structure of a basis vector frame for sum-of-rank-1
type decomposition of real-valued tensors. The decomposition we propose reinter-
prets the orthogonality property of the singular vectors of matrices as a geometric
constraint on the rank-1 matrix bases which leads to a geometrically constrained
singular vector frame. The proposed approach is essentially a non-redundant one-
to-one reparameterization and gives us an upper bound of rank for tensors.

INTRODUCTION. A tensor is a multidimensional array of scalars [3]. An order-p tensor is an
element of the space spanned by the outer product of p vectors. The main terms for tensors are the
order, dimensions, and the rank. The most widely recognized approaches for sum-of-rank-1 tensor
decompositions are: (1) CANDECOMP/PARAFAC (CP) model [2]; (2) the Tucker model [8]. With
the CP model, a tensor can be represented as a sum of rank-1 tensors in a unique fashion without
any constrains and the dimensionality of this basis set is the rank. Tucker’s model factors tensors as
a finite sum assuming orthogonal vectors to generate the rank-1 basis tensors similar to SVD, but
the result is not necessarily minimal. When we transform data we do not loose information if, at
least, our method preserves cardinality of data. SVD preserves cardinality (non-redundant) whereas
CP and Tucker models do not follow it (redundant) [4]. This work provides a decomposition model
that can decompose any order any dimensionality tensor preserving cardinality.

DECOMPOSITION OF A SYMMETRIC TENSOR. The decomposition of a symmetric tensor
A into a sum of rank-1 tensors utilizes basis tensors that are p-way outer-products of the same vector
[7]. Non-redundant decomposition for symmetric tensors was proposed in [5].

Order-2 n-dimensional symmetric tensors. Eigenvector bases for a symmetric n-dimensional
order-2 tensor (matrices) are orthogonal, Fig. 1(a). Thus we can decompose it as: A =

∑n
l=1 λlu

◦2
l ,

where U = [u1, . . . ,un] is the matrix where columns form an orthogonal frame in n-dimensional
space. For numerical decomposition of A we can use the Jacobi algorithm that tries to find q =

(
n
2

)
rotation angles {θk, k = 1, . . . , q}, such that we can construct a rotation matrix R(θk) in plane
(i, j){i = 1, . . . , n− 1, j = i+1, . . . , n} with angle θk (with a one-to-one correspondence between
the indices k and (i, j)). This solution consists of q rotation angles and n eigenvalues. The number
of free elements of a symmetric n-dimensional matrix A, mf (n, 2) = n(n + 1)/2, equals the sum
(n + q). Consequently, eigendecomposition is simply a reparameterization procedure. Solving for
the rotation matrices R(θk), we can get orthonormal eigenvectors as: U =

∏q
k=1 R(θk),U

TU =
UUT = I. The eigenvalues are uniquely identified as:

λl = ⟨u◦2
l ,A⟩F =

n∑
i=1

λi⟨u◦2
l ,u◦2

i ⟩F =
n∑

i=1

λi(u
T
l ui)

2 (1)
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Order-p 2-dimensional symmetric tensors. Let A be a 2-dimensional order-p symmetric tensor,
Fig. 1(b). In an one-to-one reparameterization, the number of linear combination coefficients r, plus
the number of parameters that characterize r corresponding vectors s, must be equal to the number
of free elements in the tensor; that is (r + s) = (p + 1), since order-p 2-dimensional symmet-
ric tensors have (p + 1) free entries. Incorporating these conditions into the design of the rank-1
sum decomposition, we obtain that symmetric 2-dimensional order-p tensor A has the following
decomposition:

A =

p∑
l=1

λlu
◦p
l ,ul =

[
cos(θ + (l − 1)π/p)
sin(θ + (l − 1)π/p)

]
(2)

Employing Gram-Schmidt orthogonalization, the linear combination coefficient vector λ is uniquely
identified by the inner-product matrix between the basis rank-1 symmetric tensor pairs and the inner-
product vector between the target tensor and the basis tensors; i.e., at the optimal decomposition,
λ = diag(Λ) = B−1c(θ). Here the matrix B and the vector c are defined elementwise as in (1):

Bij = ⟨u◦p
i ,u◦p

j ⟩F = ⟨ui,uj⟩pF = (uT
i uj)

p, ci(θ) = ⟨u◦p
i ,A⟩F (3)

where i, j = 1, . . . , p Specifically note that each entry of B reduces to the following: Bij =
cosp((i− j)π/p). For symmetric matrices, this matrix is simply identity, B = I.

Order-p n-dimensional symmetric tensors. The number of free elements of a symmetric n-
dimensional order-p tensor, Fig. 1(c), is given by: mf (n, p) =

(
n+p−1

p

)
. The decomposition of any

symmetric tensor can consist of some fixed frame of vectors rotated in n-dimensional space and any
angle between pairwise vectors can be constant and depends on order p. As in matrices, we need q
rotation angles to decompose any symmetric n-dimensional order-p tensor as a finite sum of rank-1
tensors. The number of vectors in this decomposition is: r = mr(n, p) =

(
n+p−1

p

)
−

(
n
2

)
. To

obtain the decomposition numerically, we construct a frame of r initial vectors placed in columns
of a matrix F and optimize the q rotation angles θ such that the Frobenius norm of the error tensor
is minimized. In the spirit of block coordinate descent and fixed point algorithms, for a given
candidate frame orientation, the linear combination coefficients are always obtained using (3) and
λ = diag(Λ) = B−1c(θ). At each optimization iteration, basis vectors are expressed as U =
(
∏q

k=1 R(θk))F.

=A ΛU

nn´ nn´ nn´ nn´

T

U

(a) (b) (c)

Figure 1: Decomposition of: (a) an order-2 n-dimensional, (b) an order-3 2-dimensional, (c) an
order-3 n-dimensional symmetric tensors.

VECTOR FRAMES FOR SYMMETRIC TENSORS. Based on the previous cases of vector
frames we can conclude that structure of any vector frame F must maximize minimal distance
between vectors. We can solve this problem by iteratively minimizing the squared error (SE): e2 =
⟨B − I,B − I⟩F =

∑r
i=1

∑r
j=1(Bij − Iij)

2, where as in (3) Bij = (uT
i uj)

p = (fTi fj)
p. We

figured out that for any vector frame planes exist such that frame vectors on those planes separated
by π/p radian [4]. This approach gives us r vectors, which yields a full-rank B.

DECOMPOSITION OF A NON-SYMMETRIC TENSOR. The decomposition of a non-
symmetric tensor A into a sum of rank-1 tensors utilizes basis tensors that are p-way outer-products
of different vectors.

Order-2 (n1,n2)-dimensional non-symmetric tensors. A non-symmetric (n1,n2)-dimensional
order-2 tensor is a non-symmetric matrix and we have to deal with the common case of SVD.
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Singular vector bases for non-symmetric matrices are always selected orthogonal. Thus a full-
rank (n1,n2)-dimensional non-symmetric matrix can be decomposed as: A =

∑r
l=1 λlu

(1)
l ◦ u(2)

l ,
where r = min(n1,n2), U(1) = [u

(1)
1 , . . . ,u

(1)
r ] and U(2) = [u

(2)
1 , . . . ,u

(2)
r ] are the matrices where

columns form orthogonal frames in n1 and n2 dimensional spaces, Fig. 2(a). For numerical deter-
mination of A we can use the Jacobi algorithm for each vector frame that tries to find q = q1 + q2
rotation angles {θ(1)k1

, θ
(2)
k2

; k1 = 1, . . . , q1; k2 = 1, . . . , q2}, such that we can construct rotation ma-

trices R(θ
(1)
k1

) with angle θ
(1)
k1

and R(θ
(2)
k2

) respectively. Due to cross influence of rotation matrices,
q1 =

(
n1

2

)
−

(
n1−n2

2

)
and q2 =

(
n2

2

)
−

(
n2−n1

2

)
, where

(
n
k

)
= 0 if k > n. This singular decom-

position solution consists of q = q1 + q2 rotation angles and r singular values. The number of free
elements of a non-symmetric (n1, n2)-dimensional matrix A equals the product of its dimensionali-
ties so r = n1 ·n2 − q that satisfies definition of the rank in linear algebra, where r = min(n1, n2).
Again we can see that singular decomposition is simply a reparameterization procedure. Solving
for the rotation matrices R(θ

(1)
k1

) and R(θ
(2)
k2

), we can get the orthonormal singular vectors given

by U(1) and U(2) as: U(i) =
∏qi

ki=1 R(θ
(i)
ki
), (U(i))TU(i) = U(i)(U(i))T = I, i = 1, 2. Due

to orthonormality of U(i), the singular values are uniquely identified as: λl = ⟨u(1)
l ◦ u(2)

l ,A⟩F =∑r
i=1 λi⟨u(1)

l ◦u(2)
l ,u

(1)
i ◦u(2)

i ⟩F . Described combination of vectors {(1 ◦ 1), (2 ◦ 2), . . . , (r ◦ r)}
is not unique. We can construct r! combinations of vectors on the basis of permutation matrices [1],
and any of them can be utilized for (n1,n2)-dimensional order-2 non-symmetric tensor decomposi-
tion. The permutation matrix is an order-2 r-dimensional binary-matrix that has exactly one entry
of 1 in each row and column and 0’s elsewhere. In case of symmetry n-dimensional order-2 tensor
vectors can be arranged only in ascending order.

Order-p 2-dimensional non-symmetric tensors. Let A be a 2-dimensional order-p real non-
symmetric tensor, Fig. 2(b). As for the case of symmetric 2-dimensional order-p tensor we need r
linear combination coefficients plus p rotation angles. Since the number of free elements in order-p
2-dimensional non-symmetric tensors equals to product of dimensionalities, the rank of such a tensor
is r = 2p−p. We also know that for each way of tensor we can construct just p vectors. Incorporating
these conditions into the design of the rank-1 sum decomposition, we obtain that basis frames for this
case of tensor A are expressed as in (2), where the combinations of vectors {(k(1)l , k

(2)
l , . . . , k

(p)
l )}

for rank-1 tensors must be chosen on the basis of a permutation tensor. Here the permutation tensor is
an order-p p-dimensional binary-tensor that has exactly one entry of 1 in each way and 0’s elsewhere.
The decomposition gives us λ = B−1c(Θ) , where Θ = [θ(1),θ(2), . . . ,θ(p)]. Here the matrix B
and the vector c are defined elementwise as in (3): Bij = ⟨u(1)

i ◦u(2)
i ◦ · · · ◦u(p)

i ,u
(1)
j ◦u(2)

j ◦ · · · ◦
u
(p)
j ⟩F , ci(Θ) = ⟨u(1)

i ◦ u(2)
i ◦ · · · ◦ u(p)

i ,A⟩F , where i, j = 1, . . . , r.

)1(
U

)2(
UΛ

=A

21 nn ´ rn ´1

rr ´

rn ´2

(a) (b)

=

A

)2(
U

)3(
U

)1(
U

Λ

321 nnn ´´

11 rn ´

321 rrr ´´

22 rn ´

33 rn ´

(c)

Figure 2: Decomposition of: (a) an order-2 (n1, n2)-dimensional, (b) an order-3 (2, 2, 2)-
dimensional, (c) an order-3 (n1, n2, n3)-dimensional non-symmetric tensors.

Order-p (n1,n2, . . . ,np)-dimensional non-symmetric tensors. The number of free elements of
a non-symmetric (n1, n2, . . . , np)-dimensional order-p tensor, Fig. 2(c), is mf (n, p) = n1n2 · · ·np,
where n = [n1, n2, . . . , np]. The decomposition of any non-symmetric tensor can consist of some
fixed frames of vectors rotated along each way in their dimensionality spaces and any angle between
pairwise vectors must be a constant and depends on the order p. As in the case of non-symmetric
matrices, we need q = q1 + q2 + · · · + qp rotation angles. Due to cross influence of rotation
matrices: qi =

(
ni

2

)
−

(
ñi

2

)
; ñi = ni −

∏p
j=1,j ̸=i nj so we can decompose any non-symmetric
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order-p (n1, n2, . . . , np)-dimensional tensor as a finite sum of rank-1 tensors. The rank of the tensor
in this decomposition is: r = mr(n, p) = mf (n, p)− q. To obtain the decomposition numerically,
we construct p frames each of mr(ni, p) initial vectors F(i), i = 1, . . . , p and optimize the rotation
angles θ(i) such that the Frobenius norm of the error tensor is minimized and λ = B−1c(Θ).
As in the previous case we need to choose r vectors on the basis of an order-p (r1, r2, . . . , rp)-
dimensional permutation tensor, where ri = mr(ni, p), i = 1, . . . , p. Basis vectors are expressed
as U(i) =

(∏q
k=1 R(θ

(i)
k )

)
F(i).

NUMERICAL EXPERIMENTS. Iterative optimization technique and application examples are
presented in [6, 4]. Here we show numerically that the the upper bound of tensor rank satisfies
the proposed decomposition model. Figure 3 shows how decomposition results for non-symmetric
order-3 tensors depend on rank and cardinality for best rank-r CP ’�’, incremental recursive rank-1
CP ’+’, Tucker ’◦’, and proposed ’∗’ models. On the basis of our definitions: in the case of (a), the
rank is equal to 5, (c) - 14; in the case of (b), the cardinal number is equal to 8, (d) - 24. Proposed
approach gives us the upper bound of CP-rank and the lower bound of cardinality for tensors. The
rank-r CP tensor model decomposes data sets with lower tensor rank but utilizes more parameters
than cardinality of tensors so it is redundant decomposition.
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Figure 3: Non-symmetric tensor decomposition SE and corresponding {(a),(c)} tensor rank and
{(b),(d)} cardinality for rank-r CP ’�’, incremental rank-1 CP ’+’, Tucker ’◦’, and proposed ’∗’
models; {(a),(b)} (2,2,2)-dim. tensor; {(c),(d)} (2,3,4)-dim. tensor.

CONCLUSION. We proposed a geometrically constrained basis vector frame that yields a set of
rank-1 tensor bases that is able to attain a sum-of-rank-1 tensor decomposition. We described the
upper-bound of rank for tensors and used permutation tensors to choose vectors for non-symmetric
rank-1 tensor bases from vector bases for symmetric ones. The number of variables that parameterize
the proposed decomposition is equal to the number of free elements in the tensor. Future work will
decrease complexity and evaluate the properties of the presented decomposition.
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